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Abstract

Introduction: The aim of this study was to compare the
surface microhardness of BioAggregate, ProRoot MTA,
and CEMCement when exposed to an acidic environment
or phosphate-buffered saline (PBS) as a synthetic tissue
fluid. Methods: Ninety cylindrical molds made of poly-
methyl methacrylate with an internal diameter of 6 mm
and height of 4 mm (according to ASTM E384 standard
for microhardness tests) were fabricated and filled with
BioAggregate (n = 30), tooth-colored ProRoot MTA
(n = 30), or CEM Cement (n = 30). Each group was
then divided into 3 subgroups of 10 specimens consisting
of those exposed to distilled water, exposed to PBS
(pH = 7.4), or exposed to butyric acid (pH = 5.4). After
1 week the Vickers surface microhardness test was per-
formed. Statistical analysis included 2-way analysis
of variance, followed by post hoc Dunnett T3 in cases
with lack of homoscedasticity and Tukey honestly signif-
icant difference in cases with homoscedasticity. Results:
The indentations obtained from the CEM Cement
specimens exposed to an acidic pH were not readable
because of incomplete setting. There was a significant
difference between the microhardness of the materials
regardless of the environmental conditions (P < .001).
In all the environmental conditions, MTA had significantly
higher and CEM Cement had significantly lower micro-
hardness values (P < .001). All experimental cements
had significantly higher microhardness values when
exposed to PBS (P < .001) and had significantly lower
microhardness values when exposed to butyric acid
(P < .001). Conclusions: The surface microhardness
of BioAggregate, ProRoot MTA, and CEM Cement was
reduced significantly by exposure to butyric acid and
increased significantly by exposure to PBS. In all environ-
mental conditions, MTA had significantly higher micro-
hardness values. (J Endod 2014;40:432–435)
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The outcomes of clinical restorative procedures are influenced by the chemical and
physical properties of the materials used (1). The physical properties of dental

materials are influenced by several factors such as storage temperature (2), powder-
to-liquid ratio (3), clinical conditions (4), condensation pressure (5), and placement
technique (6).

Mineral trioxide aggregate (MTA) is used extensively in a variety of challenging
endodontic therapies such as root canal treatment of immature teeth with open apices
and repair of root perforations (7). Despite the various beneficial properties of MTA
such as biocompatibility (8), sealing ability (7, 9), antibacterial (10), and bioactive ef-
fects (11, 12), it has a few disadvantages including difficult handling (13) and long
setting time (14). Furthermore, it has been well-documented that the properties of
MTA are influenced by environmental conditions (4). For example, in the presence
of periradicular inflammation, MTA may be exposed to an acidic environment (15),
which has a negative impact on various physical properties such as porosity, microhard-
ness (16), sealing ability (17), and push-out bond strength (18).

BioAggregate (Innovative Bioceramix, Vancouver, BC, Canada), a white ceramic
cement, is composed primarily of calcium silicate, calcium hydroxide, and hydroxyap-
atite and is free of aluminum and bismuth (19). BioAggregate has been shown to be
biocompatible (20) and have good sealing properties when tested in a glucose leakage
experimental model (21). Furthermore, it displays a similar antibacterial effect against
Enterococcus faecalis to that of MTA (22). Not surprisingly, because of its similar
biological properties, the manufacturer has recommended it for use in the same clinical
situations as MTA.

CEM Cement (Yektazdandan; Bionique Dent, Tehran, Iran) is another calcium
silicate–based, MTA-like hydraulic cement (23). It has been reported to be biocompat-
ible (23), with good handling characteristics (24) that can prevent bacterial leakage
and form an effective seal (24). CEM Cement has also been suggested for use in the
same clinical applications as MTA (24).

In various clinical applications such as repair of root perforation, Bioaggregate,
MTA, and CEM Cement are often applied in contact with tissue fluids such as serum
and blood. The adjacent tissue fluidmay have a normal pH ormight have lower pH levels
because of infection and inflammation (15). On the hand, if the inflammatory process in
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the adjacent tissue is controlled by endodontic treatment, the pH will
return to slightly alkaline (pH = 7.4) within 7 days (4) or less (16).
Therefore, during the setting process the surface of materials may be
exposed to acidic or slightly alkaline pH levels.

In this study to simulate infectious and normal in vivo
conditions, butyric acid and phosphate-buffered saline (PBS) have
been used. Butyric acid is one of the by-products of the metabolism
of anaerobic bacteria, the dominant bacteria in endodontic infections
(25). Therefore, to simulate infectious situations in laboratory
studies the use of butyric acid has been suggested (16, 18). PBS
is a simulated tissue fluid containing phosphate (26) that can be
used for the purpose of mimicking normal in vivo conditions in lab-
oratory studies (4, 27).

The aim of this study was to compare the surface microhardness of
Bioaggregate (batch# VRO 1004-102), tooth-colored ProRoot MTA
(batch #11004158; DENTSPLY Tulsa Dental, Tulsa, OK), and CEM
Cement (batch #C100501) in an acidic environment and/or PBS. The
null hypothesis was that exposure to an acidic environment will not
affect the surface microhardness of these materials, an indicator of
the progress of the hydration and setting process (4), and that exposure
to PBS will have no effect on surface microhardness.

Materials and Methods
Ninety cylindrical molds made of polymethyl methacrylate with an

internal diameter of 6mm and height of 4mm (according to ASTM E384
Standard for microhardness tests) were fabricated by CNC laser cutting
(LaserProI; GCC, New Taipei City, Taiwan).

Bioaggregate, tooth-colored ProRoot MTA, and CEM Cement
were prepared by mixing 1 g powder with 0.33 mL associated liquid
of each material supplied by the manufacturer.

Each group of 30 specimens was divided into 3 subgroups accord-
ing to the environmental condition: (1) exposure to distilled water, (2)
exposure to PBS (pH = 7.4) (Merck, Darmstadt, Germany), or (3)
exposure to 1 mmol/L butyric acid (pH = 5.4) (Merck).

Before cement placement, each mold was filled with distilled
water, PBS, or butyric acid according to the specific subgroup, and
then the liquid was aspirated after 20 seconds. The molds were then
filled with the prepared cements by using minimal pressure (28) and
wrapped in gauze soaked with distilled water, PBS, or butyric acid on
the top and bottom of the samples according to the subgroup and
incubated at 37�C in 100% relative humidity for 1 week.

In a pilot study, it was observed that the pH level of the gauze
covering the samples changed after 14 hours; therefore, the pieces of
gauze were replaced every 12 hours after checking the pH levels
(pH strip Panpeha; Sigma-Aldrich, Munich, Germany).

The samples were then polished by using silicon carbide sand-
paper with decreasing particle sizes of 400, 500, 800, 1000, 1200,
1500, and 2000 grit, respectively. For the purpose of facilitating
indentation and minimizing the influence of sample preparation on
TABLE 1. Mean, Minimum, and Maximum Microhardness Values of Each Group

Material

Vicke

Distilled water P

Mean Minimum Maximum Mean

MTA 83.5 � 10.2 60.7 108.8 94.1 � 11.6
Bioaggregate 28.1 � 4.4 20.8 37.8 35.4 � 4.3
CEM Cement 6.0 � 1.1 3.6 9.0 9.2 � 3.6

Differences between all groups were significant (P < .001).

JOE — Volume 40, Number 3, March 2014
surface microhardness, wet polishing with minimal hand pressure
was used.

The surface microhardness test was performed by using a Vickers
Tester (Bareiss Prufgeratebau GmbH, Oberdischingen, Germany) with
a pyramidal diamond indenter by using a load of 300 g for 10 seconds.
According to the pilot study, this load created a clear and reliable indent
in all 3 materials. Five indents were made on the polished surface
of each sample at separate locations with a 2.5� d (2.5 times the
mean diameter of each indent) distance between indentations and
from the edge of the sample (in accordance with ASTM E384 standard
for Vickers microhardness test). The Vickers microhardness value was
calculated by the testing machine on the basis of the following equation
in which F is the load in kilogram-force, d is the mean of the 2 diagonals
in mm, and HV stands for Vickers microhardness value.

HV ¼ 2Fsin 136
�

2

d2

HV ¼ 1:854 F
d2

Statistical analysis included 2-way analysis of variance, followed
by post hoc Dunnett T3 in cases with lack of homoscedasticity and
Tukey honestly significant difference in cases with homoscedasticity.
Results
The results are summarized in Table 1 and Figure 1. Because

of lack of hardening of the CEM Cement specimens exposed to butyric
acid, the indentations obtained were not readable.

There was a significant difference between the microhard-
ness of the materials regardless of the environmental conditions
(P < .001). In all the environmental conditions, MTA had significantly
higher microhardness values, followed by BioAggregate and CEM
Cement (P < .001).

All specimens exposed to PBS had significantly higher microhard-
ness values than those exposed to distilled water and butyric acid
(P < .001), and all specimens exposed to butyric acid had significantly
lower microhardness values than those exposed to PBS and distilled
water (P < .001).

Discussion
Microhardness testing is based on evaluating the resistance of

materials to deformation (29). This property is influenced by several
fundamental properties of materials such as tensile strength, modulus
of elasticity (29), and the stability of their crystal structure (29); it has
an inverse relationship with porosity (2). Microhardness tests are used
for evaluating the quality and progression of the hydration process and
as an indicator of the setting process (4, 16).

In this study the effects of acidic pH and PBS on the surface
microhardness of ProRoot MTA and 2 MTA-like materials were
rs microhardness

BS (pH = 7.4) Butyric acid (pH = 5.4)

Minimum Maximum Mean Minimum Maximum

76.0 122.8 56.7 � 8.9 42.9 73.8
23.6 46.2 8.9 � 1.4 6.4 11.9
1.0 3.1 0 0 0
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Figure 1. Mean surface microhardness values of BioAggregate, ProRoot MTA, and CEM Cement when exposed to distilled water, PBS, and butyric acid. Differences
between all groups were significant (P < .001).
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evaluated along with a control group at neutral pH (water). PBS
(pH = 7.4) and butyric acid (pH = 5.4) were applied to simulate the
environmental conditions that these cements may be exposed to. The
surface microhardness of Bioaggregate, ProRootMTA, and CEM Cement
was greater when exposed to PBS. Studies using x-ray diffraction and
scanning electron microscopy have revealed that when Bioaggregate,
ProRootMTA, and CEM Cement are exposed to phosphate-containing
solutions, carbonated apatite crystals, also known as biologic apatite,
are formed on their surfaces (27, 30, 31). These crystals represent
the mineral constitute of hard tissues such as bone, dentin, and
cementum (31); therefore, the increase in microhardness values after
exposure to PBSmay be due to the formation of these carbonated apatite
crystals. Therefore, for future laboratory studies, storage of calcium
silicate–based cements in PBS to ensure optimum hydration could be
advantageous.

In the present study the exposure of the cements to an acidic
environment decreased their microhardness values (Fig. 1). These
results are consistent with previous studies (4, 16) and reflect the
inverse effect of an acidic environment on the hydration process of
these hydraulic cements.

As a result of exposure to acidic pH and in accordance with the
findings of Namazikhah et al (16), surface microhardness values
of the cements in the present study were significantly lower. The lack
of needle-like ettringite (hydrated calcium-aluminum-sulfate) crystals
on the surface of ProRoot MTA as a result of exposure to acidic pH
(4, 32) and increase in porosity (16) have been suggested as reasons
of decreased surface microhardness.

According to the results of the current study, BioAggregate
had lower microhardness values compared with MTA. This cement,
unlikeMTA, does not contain aluminate (19). The addition of aluminate
to silicate-based cements such as MTA improves their hardening (33).
Furthermore, ettringite crystals form as a result of the reaction of alumi-
nate and sulfate phases during the hydration process (34); therefore,
BioAggregate is likely to lack ettringite crystals, and this may explain
the reason why it had lower microhardness values in comparison
with MTA.

CEM Cement had significantly lower microhardness values among
the materials. This may be due to the specific chemical composition
of this cement (24, 35), which requires more research.
434 Bolhari et al.
Conclusion
Exposure to an acidic environment had an adverse effect on the

surface microhardness of BioAggregate, ProRoot MTA, and CEM
Cement, whereas exposure to PBS significantly increased their surface
microhardness values. Among the 3 materials evaluated, ProRoot
MTA had the highest microhardness values. Therefore, use of ProRoot
MTA when environmental conditions suggest an acidic pH may be
preferred.
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